$\begin{array}{c} {\rm Multivariable~analysis~2021\text{-}2022} \\ {\rm Mock~Exam} \end{array}$

Below you will find several questions based on the exams from previous years (plus some extra exercises). The first 4 questions give an estimation of the size of the exam.

QUESTIONS

- 1. 10+10+10=30 pts
 - i) Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Show that $f: \mathbb{R}^n \to \mathbb{R}$ given by $f = \|v\|^2$ is differentiable at every point $p \in \mathbb{R}^n$.
 - ii) Compute the first and second differential at a point p = (a, b) of the function $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F(x, y) = (xy^2 + e^{x+y}, 2y)$.
 - iii) Compute the differential at the origin of

$$G(x,y) = q^1(x,y) \colon \mathbb{R}^2 \to \mathbb{R},$$

where $g^t(x, y)$ is the flow the linear ODE

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

2. $\boxed{10+10=20 \text{ pts}}$ The set of solutions to the system of two equations given below is called $S\subset\mathbb{R}$.

$$-xyz + 3z^3 - w^4 - 1 = 0$$

$$2xz - yw + x^3 - 2 = 0$$

- i) Find a basis for the tangent space $T_{s_0}S$ to the solution $s_0 = (1, 1, 1, 1)$.
- ii) Use the implicit function theorem to show that close to the solution x = y = z = w = 1 the points of S can be written as C^1 functions of two out of the four variables.
- 3. 15 pts Let $\omega = dx \wedge dy \wedge dz \wedge dw$ be the standard volume form on \mathbb{R}^4 . Compute the two-form η defined by

$$\eta_{v_1,v_2}(u_1,u_2) = \omega(v_1,v_2,u_1,u_2),$$

where v_1 and v_2 are vector fields on \mathbb{R}^4 given by $v_1 = x \frac{\partial}{\partial y}$ and $v_2 = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x}$.

- 4. 5+8+10+5+7=35 pts Define $f: \mathbb{R}^3 \to \mathbb{R}^4$ by f(x,y,z)=(2x+3y,xz,yz,xy) and ω,η by $\omega(a,b,c,e)=a\mathrm{d} a\wedge \mathrm{d} e+c\mathrm{d} b\wedge \mathrm{d} c$ and $\eta(a,b,c,e)=\mathrm{d} a\wedge \mathrm{d} c$.
 - i) Show that $f^*(\omega \wedge \eta) = 0$.
 - ii) Express $f^*\omega$ in terms of dx, dy and dz.
 - iii) Compute the integrals $\int_{\sigma_1} f^* \omega$ and $\int_{\sigma_2} \omega$, where $\sigma_1 = (\gamma, [0, 1]^2)$ and $\sigma_2 = (f \circ \gamma, [0, 1]^2)$ with γ defined by $\gamma(s, t) = (s, t, st)$.
 - iv) Do you see a relation between the two answers from the previous part?
 - v) Apply Stokes's theorem to write $\int_{\sigma_2} \eta$ as an integral over a 1-chain.
- 5. (bonus) Let N be a regular C^{∞} -smooth k-dimensional surface in \mathbb{R}^n with boundary.
 - i) Prove that the boundary ∂N is a regular C^{∞} -smooth (k-1)-dimensional surface in \mathbb{R}^n ;
 - ii) Prove that ∂N is orientable when N is orientable (meaning that it admits a nowhere vanishing top form);
 - iii) Prove that a closed ball $\overline{B_r(x_0)}$ in \mathbb{R}^n is a compact regular C^{∞} -smooth k=n-dimensional surface in \mathbb{R}^n with boundary.
 - iv) Prove that a closed ball $\overline{B_r(x_0)}$ in \mathbb{R}^n can be viewed as an n-cell.